Experiments
An experiment is the act of information processing based on data patterns of an model. The output is generally a model that can be used for example to predict or classify learned patterns.
In MLReef you have a built-in experiment pipeline, which allows you train one model at a time.
How to create a new Experiment
- Navigate to your repository, to Experiments and click the button
New Experiment
- Click the folder
Data
and select the correct data folder for your experiment. - Drag a suitable model from the right hand list to the main area in the center.
- Set all necessary parameters for this model. If you need help, you can always view the README of the model in its repository.
- Execute the experiment pipeline through the modal.
- Access your trained model and via model output
Name convention
Experiment: represent all functions to train models. The name experiment surged due to the iterative nature of model training.
Algorithm: Is the architecture of a machine learning script. In MLReef we took the convention to call them models (mostly for simplicity reasons).
Model: In MLReef this is an algorithm before and after training.